
BIP — Partial Non-Fungibility (PNF) — UID
& Transfer-as-Mint Proposal
Title: Partial Non-Fungibility (PNF): UID & Transfer-as-Mint lineage convention for non-
fungible Bitcoin outputs
Author(s): Aaron Tolentino (draft), contributors welcome
Status: Draft 1.0 — Request for Discussion
Type: Standards Track / Policy & Best Practice
License: MIT / CC-BY (to be confirmed on publication)
Created: 2025-09-23

Abstract

This BIP proposes Partial Non-Fungibility (PNF), a convention to enable unique, non-fungible
outputs on Bitcoin without indexing all satoshis or embedding large data blobs into witness
space.

The core of PNF is the Unique Identifier (UID) — a compact 32-byte commitment bound to a
specific output.
To support transfer and property tracking, this BIP introduces the Transfer-as-Mint lineage
convention: every transfer of a PNF-marked UTXO must include a new UID that explicitly
references the previous UID.

This creates a verifiable lineage chain (UID → UID → UID) with minimal on-chain footprint.

Motivation

There is undeniable market demand for uniqueness (collectibles, certificates, provenance).

Current approaches (Ordinals, Inscriptions) rely on full satoshi indexing and heavy witness data
storage, bloating Bitcoin blocks.

PNF satisfies the same demand with a lighter design:

• UID commitments (32 bytes) instead of large witness inscriptions.

• Lineage chains for transfers instead of global satoshi indexing.

• Minimal reliance on off-chain infrastructure (optional registries for metadata).

This reduces economic incentive for arbitrary inscriptions and provides a market-compatible
alternative.

Specification

UID Definition

Each PNF output is assigned a UID:

UID = SHA256("PNF_v1" || txid || ":" || vout || ":" ||
nonce || ":" || policy_id)

• txid = transaction ID (hex)

• vout = output index (decimal)

• nonce = random or user-defined entropy (32–64 bits recommended)

• policy_id = short ASCII token defining the namespace (optional)

• v1 = version marker

The UID is published in an OP_RETURN anchor:

OP_RETURN [0x01][len(policy_id)][policy_id][32-byte UID]

Transfer-as-Mint (Lineage)

When a PNF output is transferred, the new transaction must include a new UID that references
the previous one:

newUID = SHA256("PNF_v1_next" || prevUID || new_txid || ":"
|| new_vout || ":" || nonce || ":" || policy_id)

• prevUID = UID of the transferred output

• new_txid/new_vout = location of the new output

• nonce/policy_id = same rules as mint

The transaction must include an OP_RETURN with the new UID:

OP_RETURN [0x02][len(policy_id)][policy_id][32-byte newUID]
[32-byte prevUID]

This ensures lineage is explicitly visible on-chain.
Indexers and marketplaces can resolve current ownership by following the latest UID in the
chain.

Metadata Anchoring

Metadata describing the asset is stored off-chain (IPFS / Arweave / registries).
It must include fileHash, UID, and canonical serialization.
Optionally, commit-reveal schemes allow confidentiality until transfer.

Freeze Script Template (Optional)

For stronger guarantees, outputs may use a freeze script to enforce reveal conditions:

OP_SHA256 <fileHash> OP_EQUALVERIFY <pubkey> OP_CHECKSIG
Spending requires both a valid preimage (metadata hash) and a signature from the controlling
key.
This ensures controlled reveal and transfer mechanics.

Relay and Policy Recommendations

• Wallets: support UID creation and lineage during transfers.

• Nodes: may deprioritize transactions with large witness blobs lacking UID anchors.

• Marketplaces: should prefer lineage-compliant UIDs and show ownership via the latest
UID in the chain.

• Miners: may advertise preference for compact UID anchors as efficient blockspace use.

Rationale

• UID anchors avoid bloating witness space with arbitrary data.

• Transfer-as-Mint ensures clear, verifiable ownership history without satoshi indexing.

• Market adoption provides economic incentive to follow this standard over raw
inscriptions.

Backwards Compatibility

Fully backward compatible with Bitcoin — only standard scripts (P2WPKH, P2WSH,
OP_RETURN) are used.
No changes to consensus rules are required.

Security Considerations

• Collisions: prevented by including txid, vout, nonce, and policy.

• Off-chain metadata loss: mitigated by redundant anchors (IPFS + Arweave).

• Privacy: commit-reveal schemes allow delayed disclosure of preimages.

• Censorship: relay/mempool policies are opt-in, not consensus-enforced.

Test Vector (illustrative)

Mint transaction txA, vout=0

UID_A = SHA256("PNF_v1"||txidA||":"||0||":"||
42||":"||"ART")
Anchor: OP_RETURN 0x01 0x03 "ART" UID_A
Transfer to new owner txB, vout=1

UID_B = SHA256("PNF_v1_next"||UID_A||txidB||":"||1||":"||
7||":"||"ART")
Anchor: OP_RETURN 0x02 0x03 "ART" UID_B UID_A
Ownership chain: UID_A → UID_B
Current owner = receiver of txB:vout=1

Economic Impact

• UID anchors ≈ 40–70 bytes per transaction (vs kilobytes for inscriptions).

• Encourages efficient blockspace usage.

• Marketplaces benefit from simpler indexing (lineage chain).

• Reduces network congestion and negative externalities from raw inscriptions.

Reference Implementation

Reference SDKs and CLI tools are expected to:

• Compute UIDs.

• Build OP_RETURN anchors.

• Handle lineage updates on transfer.

• Integrate with IPFS / Arweave for metadata.

Acknowledgements

Thanks to community participants for early discussions on ordinals, inscriptions, and fungibility.
This BIP proposes a compromise that respects Bitcoin’s monetary base while enabling
uniqueness where markets demand it.

Conclusion

Partial Non-Fungibility (PNF) provides a path to uniqueness on Bitcoin that is efficient,
verifiable, and market-aligned.

By combining UID commitments with the Transfer-as-Mint lineage convention, we can satisfy
demand for non-fungibility without bloated witness data or global satoshi indexing.

This proposal is open for discussion, refinement, and community adoption.

